Key concepts of Computing in practice

with Scratch

Aims

- (Re)Teach Scratch
- Get 'tight to' computational thinking.
- "Transfer error":

Using blocks means we understand
them.

What do you need to understand to 'get' Scratch?

@LdnCLC

Here's what I think...

1. Blocks are instructions (with 'meaning').
2. Sequence of blocks is a big deal.
3. Computers can repeat things lots of times.
4. Computers can make decisions.
5. We can make our own 'big' (abstract) blocks; we can make our own 'meaning'.

Here's what I think...

Key stage 2

Pupils should be taught to:

- design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts
- use sequence, selection, and repetition in programs; work with variables and various forms of input and output
- use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs

1. Blocks are

instructions with

 meaning.@LdnCLC

DON'T CONNECT THE BLOCKS!!!!!!

@LdnCLC

Challenge 1

- Open project: "1 Stamp Only"
- File > Make a copy > Save with your name.
- Make a pattern:

@LdnCLC

Challenge 2

- Open project: "2 Turn and Stamp"
- File > Make a copy > Save with your name.
- Make a pattern:

Challenge 3

- Open project: "3 Turn Move and Stamp"
- File > Make a copy > Save with your name.
- Make a pattern:

@LdnCLC

Can you make your own 'single block' activity?

@LdnCLC

Drawing shapes

@LdnCLC

2. Sequence 3. Repeats

@LdnCLC

Challenge

- Open project: "4 Basic Drawing"
- File > Make a copy > save with your name.

Draw a square and a triangle

move 10 steps

turn (* 15) degrees

Extension: Draw these:
@LdnCLC

Colour

Can you change the colour?

set pen color to

Tip: You might need some of change pen color by 10 these blocks.

Extension: Draw a shape where each side is a different colour.

5. We can make our own 'big' (abstract) blocks

@LdnCLC

Draw a house

Extension: Draw a terrace of houses.

Why does 'More blocks' help?

define bad house	
move 100 steps	
turn (* 90 degrees	
move 100 steps	
turn (* 90 degrees	
move 100 steps	
turn (* 90 degrees	
move 100 steps	
turn (* 90) degrees	
move 100 steps	
turn (* 30 degrees	
move 100 steps	
turn (* 120 degrees	
move 100 steps	
turn (* 120 degrees	
move 100 steps	
turn (* 120 degrees	

How do we know they understand?

@LdnCLC

Simplify this script?
Draw this?

Mix and match.

@LdnCLC

Do I have to write loads of tests?

@LdnCLC

UK Bebras Challenge

http://www.beaver-comp.org.uk/

@LdnCLC

A princess has a magical bracelet that looks like this:

When she stores her bracelets in her drawer she first opens them.
Which of the four bracelets in her drawer is the magical one?

-9009009009 $9^{900} 0^{990}$

How do we

encourage

 understanding?@LdnCLC

Challenge

- Open project: "5 Random Drawing"
- File > Make a copy > save with your name.

Make a random line pattern

3
pick random 1 to 360
change pen color by 10

@LdnCLC

Make a random dot pattern

repeat 10

Pick random pen size
Draw a dot

4. Computers can make decision.

@LdnCLC

Challenge

Switch background to 'Nighttime’.

Can you only draw stars in the sky?

repeat 100

Pick random pen size
Pick random pen colour
Pick random place

touching color Γ ?

Draw a dot

What have you made?

What have you learnt?

@LdnCLC

Big ideas

1. Blocks are instructions (with 'meaning').
2. Sequence of blocks is a big deal.
3. Computers can repeat things lots of times.
4. Computers can make decisions.
5. We can make our own 'big' (abstract) blocks; we can make our own 'meaning'.

Other useful

 resources
@LdnCLC

- (a) (a

Phil Bagge Logo \& Scratch

Computer Science A Journey to discover how technology works

CAS Wessex Primary Conference 2015
Home CS Planning DLPlanning Schools Phil Bagge Articles Getting Involved Links Contact Blog Courses

Logo Tree

Using logo to program a tree which redraws itself differently every time the program is run.
There is a Scratch version of this but I think Logo type drawing is better in Logo than Scratch. Pupils have less choice of commands and the procedures really help pupils understanding of decomposition. Scratch does however do variable in an easier manner.

Planning

Logo Tree planning as PDF
Success Criteria
Success criteria as PDF
Success criteria as DOCX

Starting from Scratch

Starting from Scratch
This is the first in a series of resources developed by the RSE and the BCS Academy of Computing that exemplify a subset of the Computing Science-related outcomes of Curriculum for Excellence at Levels $3 \& 4$ and beyond.

The resource introduces learners to Computing Science via MIT's 'Scratch' programming environment. Since its launch, Scratch has received widespread acclaim as an ideal environment through which to introduce learners to computer programming and computational thinking.

As well as lessons, exercises and sample answers, this resource contains suggested supplementary activities and interdisciplinary learning opportunities.

Above all, this resource should not be seen as prescriptive. It contains guidance and suggestions which can make learning more engaging, while fostering computational thinking and greater understanding of Computing Science concepts in learners

This resource was partially funded by a grant from Education Scotland.
Course Material
Downioad PDF copies of the course material below. (Word versions are available in the full download)

Joe's Scratch Handout

Click here

